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Abstract

Retrieval augmented generation (RAG) has become the standard in long-
context question answering (QA) systems. However, typical implementations
of RAG rely on a rather naive retrieval mechanism, in which texts whose
embeddings are most similar to that of the query are deemed most relevant.
This has consequences in subjective QA tasks, where the most relevant
text may not directly contain the answer. In this work, we propose a
novel extension to RAG systems, which we call Retrieval from AT Derived
Documents (RAIDD). RAIDD leverages the full power of the LLM in
the retrieval process by deriving inferred features, such as summaries and
example questions, from the documents at ingest. We demonstrate that
this approach significantly improves the performance of RAG systems on
long-context QA tasks.

1 Introduction

1.1 Preliminaries

First introduced by [§], retrieval augmented generation (RAG) allows LLMs to pull relevant
information into context from a cache of documents. The system allows these models to
access up-to-date information, rely less on their parameterized-memory, and leverage a large
corpus of documents during generation, despite their limited context window [I7]. RAG
extends LLMs with a retrieval mechanism that takes a query, selects the most relevant texts
from a given corpus, and hands them to the generator to inform its answer. Early approaches,
were optimized end-to-end, using a jointly learned retriever and generator that communicated
through a shared embedding space [8]. However, the requirement that such a system must be
trained from scratch for each choice of generator architecture makes this approach expensive
and cumbersome given the rapid pace with which new LLMs are developed. However, this
paradigm was subverted by [14], which assumes the generator to be black-box, training a
generator-agnostic retriever that simply prepends the retrieved text to the generator’s input.
In practice, the retriever is often further simplified to score documents based on their cosine
similarity in a pretrained embedding space (dense retrieval); also popular is the use of BM25,
a simple term-frequency based similarity metric (sparse retrieval) [17].

1.2 Motivation

RAG systems, especially those which rely on embedding cosine similarity or BM25 to
measure relevance, are fast and remarkably effective for answering questions whose answers
are explicitly stated in the text. However, from a user’s perspective, this is only marginally
more effective than a simple ctrl+f search. We expect more from the systems that we



Question All of historians speak highly of Picardo’s work, is this true? Why?

Target Text “...was somewhat frowned upon in the 1960s and 1970s, and over
half a century later is seen by archeologists and historians as a
matter of significant controversy and regret ...”

Ground Truth  False, because some people believe that Parrado destroyed the
part of historical and architectural.

Retrieved Text “..Picardo’s published architectural drawings were highly regarded.
They were described as [Fmagnificent” by the leading Spanish
restoration architect ...”

Prediction X Yes, because his architectural drawings were described as “magnif-
icent” ...

Figure 1: Example of a question from the LooGLE [9] dataset answered by a GPT-4 based
RAG system. The system identifies the a text that describes how Picardo’s work was
regarded by one figure, but it fails to identify the more subtly worded target text which
contains the answer.

call “artificially intelligent”. In particular, we expect them to be able to answer questions
whose answers are not explicitly stated in the text, but can be easily inferred from the
text. Consider the example in Figure [} using cosine similarity between the query and
text; the retriever latches onto the text which most explicitly describes commentary on the
artist’s work and ignores the text which contains the answer but does not contain words
like “regarded”. This is a common failure mode for RAG systems, and it demonstrates how
the retriever can be a hindrance to what is otherwise a powerful model for natural language
understanding.

1.3 Related Work

RAG is an extremely active area of Al research with the goal of improving LLM performance
and safety by augmenting the generation context with useful cached information [17]. The
modern approach to RAG is generator-agnostic [14]. This is convenient as it allows for the
use of the latest and greatest LLMs without the need for retraining; however, it places a
much greater burden on the retriever to be effective and efficient.

In addition to the rather expensive and unportable practice of training domain-specific query
encoders [14] and rerankers [3], simple modifications to the retrieval mechanism can make a
profound impact on the system’s performance. For example, [I] demonstrated the benefits of
shorter chunk sizes and more granular indexing, while [11] and [I3] construct multi-resolution
document stores which afford a balance of context and precision. Input transformation has
also been shown to be an effective tool for improving dense retrieval. In this paradigm, we
use an LLM to generate a “pseudo-document” from the query: a piece of text that looks like
the document we want to retrieve but it is actually contrived [2], serving as a template for
the target document.

Data augmentation is an increasingly popular solution for improving dense retrieval. [6] uses
an RAG system to retrieve audio clips using a text query. To achieve such behavior, they
generate text aliases for each audio clip and index the clips according to these aliases. This
approach serves as [I] demonstrates the utility of transforming RAG documents into more
digestible, concise, and explicit forms. They propose “propositional retrieval”, a method
quickly adopted by the AI agent community [5] due to its effectiveness, portability, and
runtime efficiency. Their method preprocesses documents to extract individual propositions
from the text and indexes them instead of chunks of the original text. This greatly improves
retrieval of information which is explicitly stated, but it sacrifices nuance that may be
necessary for answering more complex questions.
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Figure 2: During the document ingest phase, RAIDD derives new documents from the input
by prompting an GPT feature extractor to summarize and generate questions from the
original documents. At inference, the retriever identifies the most relevant derived documents
and places the corresponding source documents into context for question answering.

1.4 Contribution

TODO: This has to be explained in detail: how ours contribute to the previously stated
results

2 Method

2.1 Derived Document Association

RAIDD generalizes the retrieval paradigms first introduced by Chen et al. (2023) [1]. In
this original paradigm, LLM generated “propositional” documents completely supplant the
original text, throughout the retrieval and generation processes. Our method, RAIDD,
diverges from this paradigm by placing the original text in the generation context, rather
than the derived documents themselves. We make this change in an effort to minimize the
impact of information loss in the document derivation process, retaining the same level of
detail as vanilla RAG. We call this practice of using the derived documents as handles for
the original text “derived document association”. Derived document association generalizes
the retrieval technique of Huang et al. (2023), in which the system retrieves audio clips
based on how well their derived text aliases match the query.

More concretely, our method involves two phases: ingest and inference. During ingest, we
prompt an LLM to generate derived documents from each input document. These derived
documents are either summaries of each chunk, sets of questions from each chunk, or both.
We generate embeddings from these derived documents and store them in a vector database.
At inference time, the retriever matches our query against all of the derived documents. For
each of the top k derived documents, we place the corresponding original document into our
question answering context.



2.2 RAIDD-S

Consider the following scenario where the document store has two documents: (a) “Johnny
mixed ‘ocean’ and ‘fire-engine’ on his palette” and (b) “Johnny made so much green as a
world-renowned painter”, and the model is asked “What color paint did Johnny make?”.
Modern LLMs are more than capable of understanding that “green” is a euphemism for
money, and that “ocean” and “fire-engine” are shades of blue and red that make purple
when combined. However, dense retrieval with OpenAT’s text-embedding-ada-002 [4] scores
document (b) 4% higher than document (a), likely because of its inclusion of words like
“made”, “green”, and “paint”. While this is a contrived example, it demonstrates how dense
retrieval systems place too much responsibility on a underpowered retriever, despite having
access to incredibly performant natural language understanding models.

RAIDD-S seeks to improve the retrieval of implied information by retrieving text chunks
based on their LLM generated summaries. By forcing our LLM to make the document
more direct, concise, and explicit, we hope to improve the retriever’s ability to identify the
most relevant text. We generate summaries for each chunk of text in the document store,
requesting that the LLM provide concept-level summaries which paraphrase the original text.
We condition this generation with the original text as well as the summary of the previous
chunk to maintain coherence.

2.3 RAIDD-Q

For RAIDD-Q, we draw inspiration from the work of [2] and [16]. While in their work, they
generate pseudo-documents from the query in order to provide the retriever with a template
for the target document, we perform the inverse process, generating pseudo-queries from
the documents. We prompt the LLM to generate a set of unique reading comprehension
questions from each chunk of text in the document store. To accomodate multiple chunk
sizes, we generate 32 questions for every 1024 tokens of text. Since each chunk now has
multiple questions associated with it, during retrieval, we retrieve the top k questions that
correspond to unique chunks of the original text. We then place the original text into context
for question answering.

2.4 RAIDD-U
2.5 Dataset and Evaluation

We evaluate long-context question answering performance using the long-dependency QA
subset of LooGLE [9]. To minimize cost, we use the first 100 questions of the dataset,
which utilize a total of 14 input contexts. Question answering performance is measured
using ROUGE [10] and GPT-4 [I2] prompted to decide whether the generated answer was
sufficiently similar to the ground-truth given the question.

Note that generating summarizations and questions used as the Al derived documents are
just the means to an end that is answering the questions.

2.6 Implementation Details

Our experiments are implemented using the Llamalndex [11] RAG library. For generating
derived documents, we prompt an instruction tuned Mixtral-8x7B model [7]. We use the
frontier-class Mistral Large model [I5] as our question answering model. Our retriever uses
a simple cosine similarity metric between the query and document embeddings, which are
encoded using OpenATD’s text-embedding-ada-002 [4]. The RAIDD process comes in three
distinct flavors, whose implmentations are each described below.

3 Experiments

3.1 Improvements over Baseline

3.2 Ablation Studies



Table 1: Performance comparison of various flavors of RAIDD. RAIDD-S uses summary
generation, while RAIDD-Q uses question generation. RAIDD-U matches queries against an
index of summaries, questions, and the raw text combined.

Method Chunk Size Overlap Top-k GPT-4 Score ROUGE-1 ROUGE-L

64 10 32 0.43 0.216 0.174

128 25 16 0.46 0.209 0.167

256 50 8 0.48 0.249 0.206

RAG 512 100 4 0.48 0.223 0.189
1024 200 9 0.39 0.212 0.167

2048 400 1 0.35 0.191 0.152

64 10 32 0.48 0.214 0.171

198 95 16 0.41 0.204 0.167

256 50 8 0.49 0.230 0.183

RAIDD-5 512 100 4 0.43 0.224 0.178
1024 200 2 0.31 0.205 0.178

9048 400 1 0.31 0.201 0.163

64 10 39 0.46 0.217 0.173

128 25 16 0.46 0.222 0.180

256 50 8 0.44 0.269 0.208

RAIDD-Q 512 100 4 0.46 0.218 0.180
1024 200 9 0.44 0.201 0.167

2048 400 1 0.39 0.203 0.164
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128 95 16 0.46 0.214 0.172

256 50 8 0.52 0.254 0.207

RAIDD-U 512 100 4 0.45 0.225 0.182
1024 200 9 0.46 0.209 0.171

2048 400 1 0.36 0.203 0.163

Our best model will likely use a combination of derived documents. For each feature used,
remove it from the base model and evaluate performance difference.

3.3 Analysis

Here, we will perform analyses of success and failure modes. We will also look at how RAIDD
improves the retrieval of target passages and changes the rank of individual documents. We
will also look at a few example questions and how our method compares to the baseline.

4 Conclusion
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